Aleatoric Uncertainty for Errors-in-Variables Models in Deep Regression

Author:

Martin J.ORCID,Elster C.

Abstract

AbstractA Bayesian treatment of deep learning allows for the computation of uncertainties associated with the predictions of deep neural networks. We show how the concept of Errors-in-Variables can be used in Bayesian deep regression to also account for the uncertainty associated with the input of the employed neural network. The presented approach thereby exploits a relevant, but generally overlooked, source of uncertainty and yields a decomposition of the predictive uncertainty into an aleatoric and epistemic part that is more complete and, in many cases, more consistent from a statistical perspective. We discuss the approach along various simulated and real examples and observe that using an Errors-in-Variables model leads to an increase in the uncertainty while preserving the prediction performance of models without Errors-in-Variables. For examples with known regression function we observe that this ground truth is substantially better covered by the Errors-in-Variables model, indicating that the presented approach leads to a more reliable uncertainty estimation.

Funder

Physikalisch-Technische Bundesanstalt (PTB)

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,General Neuroscience,Software

Reference48 articles.

1. Bassu D, Lo JT, Nave J (1999) Training recurrent neural networks with noisy input measurements. In: IJCNN’99. International joint conference on neural networks. Proceedings (Cat. No. 99CH36339), vol 1, pp 359–363. IEEE

2. Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015) Weight uncertainty in neural network. In: International conference on machine learning, pp 1613–1622. PMLR

3. Depeweg S, Hernandez-Lobato J-M, Doshi-Velez F, Udluft S (2018) Decomposition of uncertainty in bayesian deep learning for efficient and risk-sensitive learning. In: International conference on machine learning, pp 1184–1193. PMLR

4. Duvenaud D, Maclaurin D, Adams R (2016) Early stopping as nonparametric variational inference. In: Artificial intelligence and statistics, pp 1070–1077. PMLR

5. Fuller WA (2009) Measurement error models, vol 305. John Wiley and Sons, New Jersey

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3