Self-Enhanced Attention for Image Captioning

Author:

Sun Qingyu,Zhang Juan,Fang Zhijun,Gao Yongbin

Abstract

AbstractImage captioning, which involves automatically generating textual descriptions based on the content of images, has garnered increasing attention from researchers. Recently, Transformers have emerged as the preferred choice for the language model in image captioning models. Transformers leverage self-attention mechanisms to address gradient accumulation issues and eliminate the risk of gradient explosion commonly associated with RNN networks. However, a challenge arises when the input features of the self-attention mechanism belong to different categories, as it may result in ineffective highlighting of important features. To address this issue, our paper proposes a novel attention mechanism called Self-Enhanced Attention (SEA), which replaces the self-attention mechanism in the decoder part of the Transformer model. In our proposed SEA, after generating the attention weight matrix, it further adjusts the matrix based on its own distribution to effectively highlight important features. To evaluate the effectiveness of SEA, we conducted experiments on the COCO dataset, comparing the results with different visual models and training strategies. The experimental results demonstrate that when using SEA, the CIDEr score is significantly higher compared to the scores obtained without using SEA. This indicates the successful addressing of the challenge of effectively highlighting important features with our proposed mechanism.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3