Nested Entity Recognition Method Based on Multidimensional Features and Fuzzy Localization

Author:

Zhao Hua,Bai Xueyang,Zeng Qingtian,Zhou Heng,Bai Xuemei

Abstract

AbstractNested named entity recognition (NNER) aims to identify potentially overlapping named entities. Sequence labeling method and span-based method are two commonly used methods in nested named entity recognition. However, the linear structure of sequence labeling method results in relatively poor performance, and span-based method requires traversing all spans, which brings very high time complexity. All of them fail to effectively leverage the positional dependencies between internal and external entities. In order to improve these issues, this paper proposed a nested entity recognition method based on Multidimensional Features and Fuzzy Localization (MFFL). Firstly, this method adopted the shared encoding that fused three features of characters, words, and parts of speech to obtain a multidimensional feature vector representation of the text and obtained rich semantic information in the text. Secondly, we proposed to use the fuzzy localization to assist the model in pinpointing the potential locations of entities. Finally, in the entity classification, it used a window to expand the sub-sequence and enumerate possible candidate entities and predicted the classification labels of these candidate entities. In order to alleviate the problem of error propagation and effectively learn the correlation between fuzzy localization and classification labels, we adopted multi-task learning strategy. This paper conducted several experiments on two public datasets. The experimental results showed that the proposed method achieves ideal results in both nested entity recognition and non-nested entity recognition tasks, and significantly reduced the time complexity of nested entity recognition.

Funder

Shandong Natural Science Foundation Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3