Efficient Bayesian CNN Model Compression using Bayes by Backprop and L1-Norm Regularization

Author:

Shaikh Ali Muhammad,Zhao Yun-bo,Kumar Aakash,Ali Munawar,Kang Yu

Abstract

AbstractThe swift advancement of convolutional neural networks (CNNs) in numerous real-world utilizations urges an elevation in computational cost along with the size of the model. In this context, many researchers steered their focus to eradicate these specific issues by compressing the original CNN models by pruning weights and filters, respectively. As filter pruning has an upper hand over the weight pruning method because filter pruning methods don’t impact sparse connectivity patterns. In this work, we suggested a Bayesian Convolutional Neural Network (BayesCNN) with Variational Inference, which prefaces probability distribution over weights. For the pruning task of Bayesian CNN, we utilized a combined version of L1-norm with capped L1-norm to help epitomize the amount of information that can be extracted through filter and control regularization. In this formation, we pruned unimportant filters directly without any test accuracy loss and achieved a slimmer model with comparative accuracy. The whole process of pruning is iterative and to validate the performance of our proposed work, we utilized several different CNN architectures on the standard classification dataset available. We have compared our results with non-Bayesian CNN models particularly, datasets such as CIFAR-10 on VGG-16, and pruned 75.8% parameters with float-point-operations (FLOPs) reduction of 51.3% without loss of accuracy and has achieved advancement in state-of-art.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3