Author:
Li Qiang,Wei Hanqing,Hua Dingli,Wang Jinling,Yang Junxian
Abstract
AbstractThis paper pays close attention to the stabilization issue for delayed uncertain semi-Markovian jumping complex-valued networks via sliding mode control. The concerned corresponding transition rates depend on a positive constant, i.e., sojourn-time, which is not required to obey the general exponential distribution. Combine the generalized Dynkin’s formula with Lyapunov stability theory as well as the characteristics of cumulative distribution functions, a few sufficient criteria are proposed to ascertain the stochastic stability of the obtained sliding mode dynamical system. In addition, design a novel sliding mode controller to ensure all state trajectories of the potential closed-loop system can reach the synthesized sliding mode switching surface in a finite time and maintain there in the subsequent time. In the end of paper, one simple example is presented to verify superiority and feasibility of the provided controller design scheme.
Funder
the High-level Talent Research Foundation of Anhui Agricultural University
the National Natural Science Foundation of China
the Educational Commission Science Programme of Jiangxi Province
the Jiangxi Provincial Natural Science Foundation
the Natural Science Foundation of Universities of Anhui Province
the Philosophy and Social Science Foundation of Universities of Anhui Province
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献