Semantic Spectral Clustering with Contrastive Learning and Neighbor Mining

Author:

Wang Nongxiao,Ye Xulun,Zhao Jieyu,Wang Qing

Abstract

AbstractDeep spectral clustering techniques are considered one of the most efficient clustering algorithms in data mining field. The similarity between instances and the disparity among classes are two critical factors in clustering fields. However, most current deep spectral clustering approaches do not sufficiently take them both into consideration. To tackle the above issue, we propose Semantic Spectral clustering with Contrastive learning and Neighbor mining (SSCN) framework, which performs instance-level pulling and cluster-level pushing cooperatively. Specifically, we obtain the semantic feature embedding using an unsupervised contrastive learning model. Next, we obtain the nearest neighbors partially and globally, and the neighbors along with data augmentation information enhance their effectiveness collaboratively on the instance level as well as the cluster level. The spectral constraint is applied by orthogonal layers to satisfy conventional spectral clustering. Extensive experiments demonstrate the superiority of our proposed frame of spectral clustering.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3