Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures

Author:

Sanati Shiva,Rouhani Modjtaba,Hodtani Ghosheh Abed

Abstract

AbstractHierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). In this paper, we propose an information-theoretic framework for the performance comparison of HTM-spatial pooler (SP) algorithms, specifically, for quantifying the similarities and differences between sparse distributed representations in SP algorithms. We evaluate SP's standalone performance, as well as HTM's overall performance. Our comparison of various SP algorithms using Renyi mutual information, Renyi divergence, and Henze–Penrose divergence measures reveals that the SP algorithm with learning and a logarithmic boosting function yields the most effective and useful data representation. Moreover, the most effective SP algorithm leads to superior HTM results. In addition, we utilize our proposed framework to compare HTM with other state-of-the-art sequential learning algorithms. We illustrate that HTM exhibits superior adaptability to pattern changes over time than long short term memory (LSTM), gated recurrent unit (GRU) and online sequential extreme learning machine (OS-ELM) algorithms. This superiority is evident from the lower Renyi divergence of HTM (0.23) compared to LSTM6000 (0.33), LSTM3000 (0.38), GRU (0.41), and OS-ELM (0.49). HTM also achieved the highest Renyi mutual information value of 0.79, outperforming LSTM6000 (0.73), LSTM3000 (0.71), GRU (0.68), and OS-ELM (0.62). These findings not only confirm the numerous advantages of HTM over other sequential learning algorithm, but also demonstrate the effectiveness of our proposed information-theoretic approach as a powerful framework for comparing and evaluating various learning algorithms.

Funder

Cognitive Sciences and Technologies Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3