Author:
Bongiorno Donatella,Barbieri Giuseppina,Khalili Golmankhaneh Alireza
Abstract
AbstractThe purpose of this work is to analyze an integral of the s-Riemann type, where the gauge is a positive constant but the points involved in the s-Riemann sums are not randomly chosen. We demonstrate that, under this novel approach, every $${\mathcal {H}}^{s}$$
H
s
-Lebesgue integrable function is integrable.
Funder
Università degli Studi di Palermo
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Mandelbrot, B.B. 1982. The Fractal Geometry of Nature. New York: W.H. Freeman.
2. Lapidus, M.L., G. Radunović, and D. Žubrinić. 2017. Fractal Zeta Functions and Fractal Drums. New York: Springer.
3. Falconer, K. 2004. Fractal Geometry: Mathematical Foundations and Applications. New York: Wiley.
4. Jorgensen, P.E. 2006. Analysis and Probability: Wavelets, Signals, Fractals, vol. 234, 1–276. New York: Springer.
5. Freiberg, U., and M. Zähle. 2002. Harmonic calculus on fractals—A measure geometric approach I. Potential Analysis 16 (3): 265–277.