A generalized contraction mapping applied in solving modified implicit $$\phi $$-Hilfer pantograph fractional differential equations
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Link
https://link.springer.com/content/pdf/10.1007/s41478-022-00500-3.pdf
Reference47 articles.
1. Adiguzel, R.S., U. Aksoy, E. Karapinar, and I.M. Erhan. 2020. On the solution of a boundary value problem associated with a fractional differential equation. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.6652.
2. Adiguzel, R.S., U. Aksoy, E. Karapinar, and I.M. Erhan. 2021. Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. RACSAM 115: 155. https://doi.org/10.1007/s13398-021-01095-3.
3. Adiguzel, R.S., U. Aksoy, E. Karapinar, and I.M. Erhan. 2021. On the solutions of fractional differential equations via Geraghty type hybrid contractions. Journal of Computational and Applied Mathematics 20 (2): 313–333.
4. Afshari, H., H.R. Marasi, and J. Alzabut. 2021. Applications of new contraction mappings on existence and uniqueness results for implicit $$\phi $$-Hilfer fractional pantograph differential equations. Journal of Inequalities and Applications 2021: 185. https://doi.org/10.1186/s13660-021-02711-x.
5. Afshari, H., H. Hosseinpour, and H.R. Marasi. 2021. Application of some new contractions for existence and uniqueness of differential equations involving Caputo-Fabrizio derivative. Advances in Difference Equations 2021: 321. https://doi.org/10.1186/s13662-021-03476-9.
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel fixed point iteration process applied in solving the Caputo type fractional differential equations in Banach spaces;International Journal of Modern Physics C;2024-07-09
2. A faster iterative scheme for solving nonlinear fractional differential equations of the Caputo type;AIMS Mathematics;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3