Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference15 articles.
1. Abramowitz, M., and I. Stegun, eds. 1983. Handbook of Mathematical Functions, Applied Mathematics Series 55. New York, United States Department of Commerce, National Bureau of Standards: Washington D.C.
2. Axler, S., P. Bourdon, and W. Ramey. 1992. Harmonic function theory, graduate texts in mathematics. New York Berlin Heidelberg: Springer-Verlag.
3. Brelot, M. 1978. Equation de Weinstein et potentiels de Marcel Riesz. In Seminaire de Theorie de Potentiel, Paris No. 3, vol. 681 of Lecture Notes in Mathematics, pp. 18 - 38. Springer, Berlin, Germany
4. Eriksson, S.-L., and H. Orelma. 2013. Mean value properties for the Weinstein equation using the hyperbolic metric. Complex Analysis and Operator Theory. https://doi.org/10.1007/s11785-012-0280-4.
5. Eriksson, S.-L., and H. Orelma. 2013. Hyperbolic Laplace operator and the Weinstein equation in R3. Advances in Applied Clifford Algebras. https://doi.org/10.1007/s00006-013-0425-1.