1. Tychogiorgos, G., Gkelias, A., Leung, K.K.: A non-convex distributed optimization framework and its application to wireless ad-hoc networks. IEEE Trans. Wireless Commun. 12(9), 4286–4296 (2013)
2. Olshevsky, A.: Efficient information aggregation strategies for distributed control and signal processing. Phd thesis, Massachusetts Inst. Tech. (2010)
3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 11–22 (2011)
4. Chang, T., Hong, M., Wai, H., Zhang, X., Lu, S.: Distributed learning in the nonconvex world: From batch data to streaming and beyond. IEEE Signal Process. Mag. 37(3), 26–38 (2020)
5. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018)