Globally optimal univariate spline approximations

Author:

Mohr Robert,Coblenz MaximilianORCID,Kirst Peter

Abstract

AbstractWe revisit the problem of computing optimal spline approximations for univariate least-squares splines from a combinatorial optimization perspective. In contrast to most approaches from the literature we aim at globally optimal coefficients as well as a globally optimal placement of a fixed number of knots for a discrete variant of this problem. To achieve this, two different possibilities are developed. The first approach that we present is the formulation of the problem as a mixed-integer quadratically constrained problem, which can be solved using commercial optimization solvers. The second method that we propose is a branch-and-bound algorithm tailored specifically to the combinatorial formulation. We compare our algorithmic approaches empirically on both, real and synthetic curve fitting data sets from the literature. The numerical experiments show that our approach to tackle the least-squares spline approximation problem with free knots is able to compute solutions to problems of realistic sizes within reasonable computing times.

Funder

Hochschule für Wirtschaft und Gesellschaft Ludwigshafen

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization

Reference36 articles.

1. Beliakov, G.: Least squares splines with free knots: global optimization approach. Appl. Math. Comput. 149(3), 783–798 (2004)

2. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific, Belmont, MA (1997)

3. Brusco, M.J., Stahl, S.: Branch-and-Bound Applications in Combinatorial Data Analysis. Statistics and Computing. Springer, New York, NY (2005)

4. IBM ILOG CPLEX V12.7, Users manual for CPLEX. International Business Machines Corporation (2017)

5. Cox, M.G.: The least squares solution of overdetermined linear equations having band or augmented band structure. IMA J. Numer. Anal. 1(1), 3–22 (1981)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3