Abstract
AbstractThe main focus in this paper is exact linesearch methods for minimizing a quadratic function whose Hessian is positive definite. We give a class of limited-memory quasi-Newton Hessian approximations which generate search directions parallel to those of the BFGS method, or equivalently, to those of the method of preconditioned conjugate gradients. In the setting of reduced Hessians, the class provides a dynamical framework for the construction of limited-memory quasi-Newton methods. These methods attain finite termination on quadratic optimization problems in exact arithmetic. We show performance of the methods within this framework in finite precision arithmetic by numerical simulations on sequences of related systems of linear equations, which originate from the CUTEst test collection. In addition, we give a compact representation of the Hessian approximations in the full Broyden class for the general unconstrained optimization problem. This representation consists of explicit matrices and gradients only as vector components.
Funder
Vetenskapsrådet
Royal Institute of Technology
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Control and Optimization
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献