Distribution-free algorithms for predictive stochastic programming in the presence of streaming data

Author:

Diao Shuotao,Sen SuvrajeetORCID

Abstract

AbstractThis paper studies a fusion of concepts from stochastic programming and non-parametric statistical learning in which data is available in the form of covariates interpreted as predictors and responses. Such models are designed to impart greater agility, allowing decisions under uncertainty to adapt to the knowledge of predictors (leading indicators). This paper studies two classes of methods for such joint prediction-optimization models. One of the methods may be classified as a first-order method, whereas the other studies piecewise linear approximations. Both of these methods are based on coupling non-parametric estimation for predictive purposes, and optimization for decision-making within one unified framework. In addition, our study incorporates several non-parametric estimation schemes, including k nearest neighbors (kNN) and other standard kernel estimators. Our computational results demonstrate that the new algorithms proposed in this paper outperform traditional approaches which were not designed for streaming data applications requiring simultaneous estimation and optimization as important design features for such algorithms. For instance, coupling kNN with Stochastic Decomposition (SD) turns out to be over 40 times faster than an online version of Benders Decomposition while finding decisions of similar quality. Such computational results motivate a paradigm shift in optimization algorithms that are intended for modern streaming applications.

Funder

AFOSR

Office of Naval Research Global

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization

Reference54 articles.

1. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

2. Bassok, Y., Anupindi, R., Akella, R.: Single-period multiproduct inventory models with substitution. Oper. Res. 47(4), 632–642 (1999)

3. Bertsimas, D., Kallus, N.: From predictive to prescriptive analytics. Manag. Sci.(2019)

4. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization, vol. 6. Athena Scientific Belmont, Belmont (1997)

5. Biau, G., Devroye, L.: Lectures on the Nearest Neighbor Method, vol. 246. Springer, New York (2015)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3