A comparison of reduced and unreduced KKT systems arising from interior point methods
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Control and Optimization
Link
http://link.springer.com/article/10.1007/s10589-017-9907-8/fulltext.html
Reference40 articles.
1. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optim. Methods Softw. 11, 275–302 (1999)
2. Axelsson, O.: Preconditioners for regularized saddle point matrices. J. Numer. Math. 19(2), 91–112 (2011)
3. Baryamureeba, V., Steihaug, T.: On the convergence of an inexact primal-dual interior point method for linear programming. In: Lirkov, I., Margenov, S., Wasniewski, J. (eds.) Proceedings of the 5th International Conference on Large-Scale Scientific Computing. Lecture Notes in Computer Science, vol. 3743, pp. 629–637. Springer, Berlin (2006)
4. Bellavia, S.: An inexact interior point method. J. Optim. Theory Appl. 96, 109–121 (1998)
5. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Polynomial worst-case iteration complexity of quasi-Newton primal-dual interior point algorithms for linear programming;Computational Optimization and Applications;2024-06-07
2. Efficient Preconditioners for Solving Dynamical Optimal Transport via Interior Point Methods;SIAM Journal on Scientific Computing;2024-05-02
3. A structured modified Newton approach for solving systems of nonlinear equations arising in interior-point methods for quadratic programming;Computational Optimization and Applications;2023-06-16
4. A Generalized Simplified Hermitian and Skew-Hermitian Splitting Preconditioner for Double Saddle Point Problems;Computational Mathematics and Mathematical Physics;2023-05
5. A New Stopping Criterion for Krylov Solvers Applied in Interior Point Methods;SIAM Journal on Scientific Computing;2023-04-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3