Abstract
AbstractWe develop techniques to construct a series of sparse polyhedral approximations of the semidefinite cone. Motivated by the semidefinite (SD) bases proposed by Tanaka and Yoshise (Ann Oper Res 265:155–182, 2018),
we propose a simple expansion of SD bases so as to keep the sparsity of the matrices composing it. We prove that the polyhedral approximation using our expanded SD bases contains the set of all diagonally dominant matrices and is contained in the set of all scaled diagonally dominant matrices. We also prove that the set of all scaled diagonally dominant matrices can be expressed using an infinite number of expanded SD bases. We use our approximations as the initial approximation in cutting plane methods for solving a semidefinite relaxation of the maximum stable set problem. It is found that the proposed methods with expanded SD bases are significantly more efficient than methods using other existing approximations or solving semidefinite relaxation problems directly.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Control and Optimization
Reference47 articles.
1. Ahmadi, A.A., Majumdar, A.: DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization. SIAM J. Appl. Algebra Geom. 3, 193–230 (2019)
2. Ahmadi, A.A., Dash, S., Hall, G.: Optimization over structured subsets of positive semidefinite matrices via column generation. Discrete Optim. 24, 129–151 (2017)
3. Arima, N., Kim, S., Kojima, M.: A quadratically constrained quadratic optimization model for completely positive cone programming. SIAM J. Optim. 23, 2320–2340 (2013)
4. Arima, N., Kim, S., Kojima, M., Toh, K.-C.: A robust Lagrangian-DNN method for a class of quadratic optimization problems. Comput. Optim. Appl. 66, 453–479 (2017)
5. Arima, N., Kim, S., Kojima, M., Toh, K.-C.: Lagrangian-conic relaxations, part i: a unified framework and its applications to quadratic optimization problems. Pac. J. Optim. 14, 161–192 (2018)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献