Author:
Gibali Aviv,Küfer Karl-Heinz,Reem Daniel,Süss Philipp
Funder
The Federal Ministry of Education and Research of Germany
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Control and Optimization
Reference76 articles.
1. Agmon, S.: The relaxation method for linear inequalities. Can. J. Math. 6, 382–392 (1954)
2. Amelunxen, D.: Geometric analysis of the condition of the convex feasibility problem. Ph. D. Dissertation, University of Paderborn (2011)
3. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)
4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, Berlin (2017)
5. Bauschke, H.H., Koch, V.R.: Projection methods: Swiss army knives for solving feasibility and best approximation problems with halfspaces. Contemp. Math. 636, 1–40 (2015)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献