Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Control and Optimization
Reference42 articles.
1. Azadi, S., Sra, S.: Towards an optimal stochastic alternating direction method of multipliers. In: Xing, EP., Jebara, T. (eds.) Proceedings of the 31st International Conference on Machine Learning, vol. 32 of Proceedings of Machine Learning Research, Bejing, China, 22–24 , PMLR, pp. 620–628 (2014)
2. Bai, J.C., Li, J.C., Xu, F.M., Zhang, H.: Generalized symmetric ADMM for separable convex optimization. Comput. Optim. Appl. 70, 129–170 (2018)
3. Boley, D.: Local linear convergence of the alternating direction method of multipliers on quadratic or linear programs. SIAM J. Optim. 23, 2183–2207 (2013)
4. Cai, X., Han, D., Yuan, X.: On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function. Comput. Optim. Appl. 66, 39–73 (2017)
5. Chambolle, A., Ehrhardt, M.J., Richtárik, P., Schönlieb, C.-B.: Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM J. Optim. 28, 2783–2808 (2018)
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献