SCORE: approximating curvature information under self-concordant regularization

Author:

Adeoye Adeyemi D.ORCID,Bemporad Alberto

Abstract

AbstractOptimization problems that include regularization functions in their objectives are regularly solved in many applications. When one seeks second-order methods for such problems, it may be desirable to exploit specific properties of some of these regularization functions when accounting for curvature information in the solution steps to speed up convergence. In this paper, we propose the SCORE (self-concordant regularization) framework for unconstrained minimization problems which incorporates second-order information in the Newton-decrement framework for convex optimization. We propose the generalized Gauss–Newton with Self-Concordant Regularization (GGN-SCORE) algorithm that updates the minimization variables each time it receives a new input batch. The proposed algorithm exploits the structure of the second-order information in the Hessian matrix, thereby reducing computational overhead. GGN-SCORE demonstrates how to speed up convergence while also improving model generalization for problems that involve regularized minimization under the proposed SCORE framework. Numerical experiments show the efficiency of our method and its fast convergence, which compare favorably against baseline first-order and quasi-Newton methods. Additional experiments involving non-convex (overparameterized) neural network training problems show that the proposed method is promising for non-convex optimization.

Funder

Scuola IMT Alti Studi Lucca

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization

Reference57 articles.

1. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 400–407 (1951)

2. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010, pp. 177–186. Springer, USA (2010)

3. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research 12(7) (2011)

4. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3