Author:
Bosschieter Tomas M.,Xu Zifei,Lan Hui,Lengerich Benjamin J.,Nori Harsha,Painter Ian,Souter Vivienne,Caruana Rich
Funder
Microsoft’s AI for Good Research Lab
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Science Applications,Health Informatics,Information Systems
Reference46 articles.
1. Osterman MJ, Hamilton BE, Martin JA, Driscoll AK, Valenzuela CP (2022) Births: final data for 2020
2. Declercq E, Zephyrin L (2021) Severe Maternal Morbidity in the United States: A Primer. Commonwealth Fund
3. Creanga AA, Bateman BT, Kuklina EV, Callaghan WM (2014) Racial and ethnic disparities in severe maternal morbidity: a multistate analysis, 2008–2010. Am J Obstet Gynecol 210(5):435–1
4. Gao C, Osmundson S, Yan X, Edwards DV, Malin BA, Chen Y (2019) Learning to identify severe maternal morbidity from electronic health records. Stud Health Technol Inform 264:143
5. Lengerich BJ, Caruana R, Weeks WB, Painter I, Spencer S, Sitcov K, Daly C, Souter V (2021) 1017 insights into severe maternal morbidity in the NTSV population. Am J Obstet Gynecol 224(2):629–630
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献