Validation of Electrocardiogram Based Photoplethysmogram Generated Using U-Net Based Generative Adversarial Networks

Author:

Sohn Jangjay,Shin Heean,Lee Joonnyong,Kim Hee Chan

Abstract

AbstractPhotoplethysmogram (PPG) performs an important role in alarming atrial fibrillation (AF). While the importance of PPG is emphasized, there is insufficient amount of openly available atrial fibrillation PPG data. We propose a U-net-based generative adversarial network (GAN) which synthesize PPG from paired electrocardiogram (ECG). To measure the performance of the proposed GAN, we compared the generated PPG to reference PPG in terms of morphology similarity and also examined its influence on AF detection classifier performance. First, morphology was compared using two different metrics against the reference signal: percent root mean square difference (PRD) and Pearson correlation coefficient. The mean PRD and Pearson correlation coefficient were 27% and 0.94, respectively. Heart rate variability (HRV) of the reference AF ECG and the generated PPG were compared as well. The p-value of the paired t-test was 0.248, indicating that no significant difference was observed between the two HRV values. Second, to validate the generated AF PPG dataset, four different datasets were prepared combining the generated PPG and real AF PPG. Each dataset was used to optimize a classification model while maintaining the same architecture. A test dataset was prepared to test the performance of each optimized model. Subsequently, these datasets were used to test the hypothesis whether the generated data benefits the training of an AF classifier. Comparing the performance metrics of each optimized model, the training dataset consisting of generated and real AF PPG showed a test accuracy result of 0.962, which was close to that of the dataset consisting only of real AF PPG data at 0.961. Furthermore, both models yielded the same F1 score of 0.969. Lastly, using only the generated AF PPG dataset resulted in test accuracy of 0.945, indicating that the trained model was capable of generating valuable AF PPG. Therefore, it can be concluded that the generated AF PPG can be used to augment insufficient data. To summarize, this study proposes a GAN-based method to generate atrial fibrillation PPG that can be used for training atrial fibrillation PPG classification models.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Science Applications,Health Informatics,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3