Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Science Applications,Health Informatics,Information Systems
Reference33 articles.
1. Leaman R, Wojtulewicz L, Sullivan R, Skariah A, Yang J, Gonzalez G (2010) Towards Internet-age pharmacovigilance: extracting adverse drug reactions from user posts to health-related social networks. In: Proc. 2010 Work. Biomed. Nat. Lang. Process., Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 117–125.
http://dl.acm.org/citation.cfm?id=1869961.1869976
2. Benton A, Ungar L, Hill S, Hennessy S, Mao J, Chung A, Leonard CE, Holmes JH (2011) Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J Biomed Inform 44:989–996.
https://doi.org/10.1016/j.jbi.2011.07.005
3. Yang CC, Jiang L, Yang H, Tang X (2012) Detecting signals of adverse drug reactions from health consumer contributed content in social media. Proc ACM SIGKDD Work Heal Informatics
4. Yates A, Goharian N (2013) ADRTrace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites. In: Serdyukov P, Braslavski P, Kuznetsov S, Kamps J, Rüger S, Agichtein E, Segalovich I, Yilmaz E (Eds) Adv. Inf. Retr. SE - 92, Springer Berlin Heidelberg, pp 816–819. doi:
https://doi.org/10.1007/978-3-642-36973-5_92.
5. White RW, Tatonetti NP, Shah NH, Altman RB, Horvitz E (2013) Web-scale pharmacovigilance: listening to signals from the crowd. J Am Med Inform Assoc 20:404–408.
https://doi.org/10.1136/amiajnl-2012-001482
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献