Improving Equity in Deep Learning Medical Applications with the Gerchberg-Saxton Algorithm

Author:

Ay Seha,Cardei Michael,Meyer Anne-Marie,Zhang Wei,Topaloglu Umit

Abstract

AbstractDeep learning (DL) has gained prominence in healthcare for its ability to facilitate early diagnosis, treatment identification with associated prognosis, and varying patient outcome predictions. However, because of highly variable medical practices and unsystematic data collection approaches, DL can unfortunately exacerbate biases and distort estimates. For example, the presence of sampling bias poses a significant challenge to the efficacy and generalizability of any statistical model. Even with DL approaches, selection bias can lead to inconsistent, suboptimal, or inaccurate model results, especially for underrepresented populations. Therefore, without addressing bias, wider implementation of DL approaches can potentially cause unintended harm. In this paper, we studied a novel method for bias reduction that leverages the frequency domain transformation via the Gerchberg-Saxton and corresponding impact on the outcome from a racio-ethnic bias perspective.

Funder

Bioinformatics Shared Resource of the Wake Forest Baptist Comprehensive Cancer Center’s NCI Cancer Center Support Grant

National Center for Advancing Translational Sciences, National Institutes of Health

National Cancer Institute

Wake Forest University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3