Improved Dataset Characterisation for Meta-learning

Author:

Peng Yonghong,Flach Peter A.,Soares Carlos,Brazdil Pavel

Publisher

Springer Berlin Heidelberg

Reference32 articles.

1. C. E. Brodley. Recursive automatic bias selection for classifier construction. Machine Learning, 20:63–94, 1995.

2. H. Bensusan, and C. Giraud-Carrier. Discovering Task Neighbourhoods through Landmark Learning Performances. In Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery. 325–330, 2000.

3. H. Bensusan, C. Giraud-Carrier, and C. Kennedy. Higher-order Approach to Metalearning. The ECML’2000 workshop on Meta-Learning: Building Automatic Advice Strategies for Model Selection and Method Combination, 109–117, 2000.

4. C. Blake, E. Keogh, C. Merz. http://www.ics.uci.edu/~mlearn/mlrepository.html . University of California, Irvine, Dept. of Information and Computer Sciences,1998.

5. P. Brazdil, J. Gama, and R. Henery. Characterizing the Applicability of Classification Algorithms using Meta Level Learning. In Proceeedings of the European Conference on Machine Learning, ECML-94, 83–102, 1994.

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AutoMRM: A Model Retrieval Method Based on Multimodal Query and Meta-learning;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

2. CIAMS: clustering indices-based automatic classification model selection;International Journal of Data Science and Analytics;2023-08-19

3. Classifier selection using geometry preserving feature;Neural Computing and Applications;2023-07-28

4. Comparative Analysis of Machine Learning Algorithms on Data Sets of Different Characteristics for Digital Transformation;2023 46th MIPRO ICT and Electronics Convention (MIPRO);2023-05-22

5. TSC-AutoML: Meta-learning for Automatic Time Series Classification Algorithm Selection;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3