Quantification of the Kinetic Energy Conversion to Temperature Increase in Metal-on-Metal Impacts up to Hypervelocity Conditions by Molecular Dynamics Simulation

Author:

Signetti S.ORCID,Heine A.ORCID

Abstract

AbstractThe dynamic impact loading of metals goes along with energy conversion from kinetic energy to internal energy and, ultimately, temperature increase. The fraction of the kinetic energy partitioned into heating is strongly dependent on the impact velocity. Limiting cases are already well characterized, both experimentally and numerically. At low velocities, plastic work is the main source of internal energy increase and contributes to approximately 100% to material heating. Toward high velocities, approaching a hydrodynamic-like condition but still below the threshold for material melting or vaporization, about 50% of the kinetic energy is converted to internal energy. The current work addresses the intermediate regime of mixed phenomenology, where analytical descriptions are hardly feasible and typical simulation methods of impact engineering, namely hydrocodes, fail to make reliable numerical predictions. For this purpose, we here alternatively apply molecular dynamics simulations at the nanometer scale, taking iron as exemplary test case. The results complement early findings by extending them to a broader range of validity.

Funder

Bundesministerium der Verteidigung

Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut EMI

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,Materials Science (miscellaneous)

Reference41 articles.

1. Hiermaier SJ (2008) Structures under crash and impact. Continuum mechanics, discretization and experimental characterization. Springer, New York

2. Bjork RL, Olshaker AE (1965) The role of melting and vaporization in hypervelocity impact. Report No. RM-3490-PR. RAND Corporation, Santa Monica

3. Clough N, Lieblein S, McMillan AR (1969) Crater characteristics of 11 metal alloys under hyper-velocity impact including effects of projectile density and target temperature. Report No. NASA-TN-D-5135. National Astronautic and Space Administration, Washington DC

4. Schneider E, Stilp AJ (1980) Influence in the projectile properties on the partition of energy during hypervelocity impacts. In: Proceedings of the 5th International Symposium on Ballistics. April 13–15, 1980, Toulouse, France. Ecole Nationale Supérieure de l’Aéronatique et de l’Espace, Toulouse, pp 191–195

5. Hassani-Gangaraj M, Veysset D, Nelson KA, Schuh CA (2018) Melt-driven erosion in microparticle impact. Nat Commun 9:5077. https://doi.org/10.1038/s41467-018-07509-y

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3