Measuring the Effect of Strain Rate on Deformation and Damage in Fibre-Reinforced Composites: A Review

Author:

Perry J. I.ORCID,Walley S. M.ORCID

Abstract

AbstractThis review aims to assess publications relevant to understanding the rate-dependent dynamic behaviour of glass- and carbon-fibre reinforced polymer composites (FRPs). FRPs are complex structures composed of fibres embedded in a polymer matrix, making them highly anisotropic. Their properties depend on their constituent materials as well as micro-, meso- and macro-scale structure. Deformation proceeds via a variety of damage mechanisms which degrade them, and failure can occur by one or more different processes. The damage and failure mechanisms may exhibit complex and unpredictable rate-dependence, with certain phenomena only observable under specific loading conditions or geometries. This review focusses on experimental methods for measuring the rate-dependent deformation of fibre composites: it considers high-stain-rate testing of both specimens of ‘simple’ geometry as well as more complex loadings such as joints, ballistic impact and underwater blast. The effects of strain rate on damage and energy-based processes are also considered, and several scenarios identified where strength and toughness may substantially decrease with an increase in strain rate.

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3