Faster algorithms for k-subset sum and variations

Author:

Antonopoulos AntonisORCID,Pagourtzis ArisORCID,Petsalakis StavrosORCID,Vasilakis ManolisORCID

Abstract

AbstractWe present new, faster pseudopolynomial time algorithms for the k-Subset Sum problem, defined as follows: given a set Z of n positive integers and k targets $$t_1, \ldots , t_k$$ t 1 , , t k , determine whether there exist k disjoint subsets $$Z_1,\dots ,Z_k \subseteq Z$$ Z 1 , , Z k Z , such that $$\Sigma (Z_i) = t_i$$ Σ ( Z i ) = t i , for $$i = 1, \ldots , k$$ i = 1 , , k . Assuming $$t = \max \{ t_1, \ldots , t_k \}$$ t = max { t 1 , , t k } is the maximum among the given targets, a standard dynamic programming approach based on Bellman’s algorithm can solve the problem in $$O(n t^k)$$ O ( n t k ) time. We build upon recent advances on Subset Sum due to Koiliaris and Xu, as well as Bringmann, in order to provide faster algorithms for k-Subset Sum. We devise two algorithms: a deterministic one of time complexity $${\tilde{O}}(n^{k / (k+1)} t^k)$$ O ~ ( n k / ( k + 1 ) t k ) and a randomised one of $${\tilde{O}}(n + t^k)$$ O ~ ( n + t k ) complexity. Additionally, we show how these algorithms can be modified in order to incorporate cardinality constraints enforced on the solution subsets. We further demonstrate how these algorithms can be used in order to cope with variations of k-Subset Sum, namely Subset Sum Ratio, k-Subset Sum Ratio and Multiple Subset Sum.

Funder

National Technical University of Athens

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Control and Optimization,Discrete Mathematics and Combinatorics,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approximating subset sum ratio via partition computations;Acta Informatica;2024-01-12

2. On a cube and subspace projections;Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3