Water and energy savings from greywater reuse: a modelling scheme using disaggregated consumption data

Author:

Knutsson J.ORCID,Knutsson P.ORCID

Abstract

AbstractMunicipal drinking water supplies are under great stress globally, and one way to mitigate the problems is the reutilization of wastewater in various settings. In this paper, a greywater reuse scheme and the impact of system design and configuration on water and energy savings are investigated. The objective of the paper was to investigate the impact of hydraulic design and performance of a greywater treatment and reuse system on water and energy savings. A simulation model was created based on real, disaggregated water consumption data that predicts the reuse potential. Three scenarios were investigated; (1) greywater collection from the bathroom and reuse for toilet flushing, (2) greywater collection from bathroom sinks and showers, and reuse as hot water for sinks and showers, and (3) a combination of (1) and (2) where greywater collection from bathroom sinks and showers is used for toilet flushing, sinks and shower. The results indicate hot water reductions between 55.6 and 58.2%, while cold water reductions ranged from 5.8 to 30.6%. Reductions in energy for producing hot water between 43.5 and 46.8% were observed. Recommendations per connected user for hydraulic design ranged from 0.033 to 0.1 dm3 min−1, 3 dm3, and 0.7–10 dm3 for treatment capacity, collection and holding tank volume.

Funder

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3