Publisher
Springer Science and Business Media LLC
Subject
General Engineering,Condensed Matter Physics
Reference13 articles.
1. Sh. M. Bakhyshev, One-dimensional inverse thermoelasticity problems, J. Eng. Phys. Thermophys., 65, No. 1, 702–707 (1993).
2. A. N. Tikhonov, V. V. Akimenko, V. D. Kal’ner, V. B. Glasko, Yu. V. Kal’ner, and N. I. Kulik, Planning a physical experiment of determination of the parameters of a material by using mathematical methods, J. Eng. Phys. Thermophys., 61, No. 2, 941–946 (1991).
3. S. A. Budnik, A. V. Nenarokomov, P. V. Prosuntsov, and D. M. Titov, Identification of mathematical thermoelasticity models. 1. Analysis and formulation of the problem, Teplov. Prots. Tekh., No. 3, 118–125 (2017).
4. Yu. M. Matsevityi, E. A. Strel’nikova, V. O. Povgorodnii, N. A. Safonov, and V. V. Ganchin, Methodology of solving inverse heat conduction and thermoelasticity problems for identification of thermal processes, J. Eng. Phys. Thermophys., 94, No. 5, 1110–1116 (2021).
5. M. R. Romanovskii, Mathematical modeling of experiments with the help of inverse problems, J. Eng. Phys. Thermophys., 57, No. 3, 1112–1117 (1989).