Mineral Prospectivity Mapping Based on Spatial Feature Classification with Geological Map Knowledge Graph Embedding: Case Study of Gold Ore Prediction at Wulonggou, Qinghai Province (Western China)

Author:

Yan Qun,Zhao Juan,Xue LinfuORCID,Wei Liqiong,Ji Mingjia,Ran Xiangjin,Dai Junhao

Abstract

AbstractProspectivity mapping based on deep learning typically requires substantial amounts of geological feature information from known mineral deposits. Due to the limited spatial distribution of ore deposits, the training of predictive models is often hampered by insufficient positive samples. Meanwhile, data-driven mineral prospectivity mapping often overlooks domain knowledge and expert experience, leading to poor interpretability of predictive results. To address this problem, we employed the Gaussian mixture model (GMM) for spatial feature classification to expand the number of positive samples. The approach integrated the embedding of geological map knowledge graphs with geological exploration data to enhance the knowledge constraints of the prospecting model, which enabled the integration of knowledge with data. Considering the complex spatial structure of geological elements, a bi-branch utilizing the 1-dimensional convolutional neural network (CNN1D) and graph convolutional network (GCN) was used to extract geological spatial features for model training and prediction. To validate the effectiveness of the method, a gold mineralization prediction study was conducted in the Wulonggou area (Qinghai province, western China). The results indicate that, when the number of GMM spatial feature classifications was 17, the positive-to-negative sample ratio was optimal, and the embedding of the knowledge graph controlled the prediction area distribution effectively, which demonstrated strong consistency between the prospecting area and the known mineral deposits. Compared with the predictions by CNN1D, the fused prediction model of CNN1D and GCN yielded higher accuracy. Our model identified 11 classes of mineralization potential areas and provides geological interpretations for different prediction categories.

Funder

Cooperation Program of Qinghai Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3