Reservoir Characterization Using Multi-component Seismic Data in a Novel Hybrid Model Based on Clustering and Deep Neural Network
Author:
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science
Link
https://link.springer.com/content/pdf/10.1007/s11053-021-09863-z.pdf
Reference57 articles.
1. Abdel-Fattah, M. I., Pigott, J. D., & El-Sadek, M. S. (2020). Integrated seismic attributes and stochastic inversion for reservoir characterization: Insights from Wadi field (NE Abu-Gharadig Basin, Egypt). Journal of African Earth Sciences, 161, 103661.
2. Abdideh, M., & Ameri, A. (2019). Cluster analysis of petrophysical and geological parameters for separating the electrofacies of a gas carbonate reservoir sequence. Natural Resources Research, 29(3), 1843–1856.
3. Abdulaziz, A. M., & Hawary, S. S. (2020). Prediction of carbonate diagenesis from well logs using artificial neural network: An innovative technique to understand complex carbonate systems. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2020.01.010
4. Abdulaziz, A. M., Mahdi, H. A., & Sayyouh, M. H. (2018). Prediction of reservoir quality using well logs and seismic attributes analysis with artificial neural network: A case study from farrud reservoir, al-ghani field, Libya. Journal of Applied Geophysics, 161, 239–254.
5. Babasafari, A. A., Ghosh, D., Salim, A. M. A., & Kordi, M. (2020). Lithology-dependent seismic anisotropic amplitude variation with offset correction in transversely isotropic media. Geophysical Prospecting, 68(8), 2471–2493.
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The artificial neural network-based two-phase equilibrium calculation framework for fast compositional reservoir simulation of CO2 EOR;Fluid Phase Equilibria;2024-10
2. Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction;Petroleum Science;2024-08
3. Transfer learning-based hybrid deep learning method for gas-bearing distribution prediction with insufficient training samples and uncertainty analysis;Energy;2024-07
4. A Framework for Predicting the Gas-Bearing Distribution of Unconventional Reservoirs by Deep Learning;Natural Resources Research;2024-05-02
5. Tracer Research Methods for Hydrocarbon Substances in Shale Oil Reservoirs;Chemistry and Technology of Fuels and Oils;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3