Using Bayesian Neural Networks for Uncertainty Assessment of Ore Type Boundaries in Complex Geological Models

Author:

Jordão HelgaORCID,Sousa António JorgeORCID,Soares Amílcar

Abstract

AbstractBuilding an orebody model is a key step in the design and operation of a mine because it provides the basis for follow-up mine decisions. Recently, it was shown that convolutional neural networks can successfully reproduce the manual geological interpretation of a complex ore deposit. The deep learning approach mitigates the shortcomings of a labor-intensive process that greatly limits the speed at which geological resources can be updated. However, convolutional neural network architectures lack the ability to measure the confidence of their predictions. In this study, we tried to assess the uncertainty of the boundaries of these domains so that the characterization of metal grades within them can account for this uncertainty. We explored and compared Monte Carlo Dropout and Bayesian neural networks to assess the uncertainty of deep convolutional neural network models trained to predict geological domains conditioned to drill-hole data. Monte Carlo Dropout uncertainty maps reflect the uncertainty in geological interpretations. The uncertainty is highest in areas where the interpreter/geologist had more difficulty delineating the boundaries of geological bodies. This is known as geological interpretation uncertainty. In contrast, Bayesian neural network uncertainty is visible depending on ore type frequency, complexity, and heterogeneity. Bayesian neural networks are able to better represent the uncertainty regarding the unknown. The application example here is a real case study of several ore types from a polymetallic sulfide orebody located in the south of Portugal.

Funder

Fundação para a Ciência e a Tecnologia

Universidade de Lisboa

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Reference49 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. arXiv:1603.04467. https://doi.org/10.48550/arXiv.1603.04467

2. Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., & Nahavandi, S. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243–297.

3. Alabert, F. (1987). Stochastic imaging of spatial distributions using hard and soft information (Master’s thesis). Stanford University.

4. Al-Mudhafar, W. J. (2017). Multiple-point geostatistical lithofacies simulation of fluvial sand-rich depositional environment: A case study from Zubair formation/south Rumaila oil field. SPE Reservoir Evaluation & Engineering, 21(01), 39–53.

5. Armstrong, M., Galli, A., Le-Loch, G., Geffroy, F., & Eschard, R. (2003). Plurigaussian simulations in geosciences. Berlin: Springer. https://doi.org/10.1007/978-3-642-19607-2

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3