Six Novel Hybrid Extreme Learning Machine–Swarm Intelligence Optimization (ELM–SIO) Models for Predicting Backbreak in Open-Pit Blasting

Author:

Li Chuanqi,Zhou Jian,Khandelwal ManojORCID,Zhang Xiliang,Monjezi Masoud,Qiu Yingui

Abstract

AbstractBackbreak (BB) is one of the serious adverse blasting consequences in open-pit mines, because it frequently reduces economic benefits and seriously affects the safety of mines. Therefore, rapid and accurate prediction of BB is of great significance to mine blasting design and other production activities. For this purpose, six different swarm intelligence optimization (SIO) algorithms were proposed to optimize the extreme learning machine (ELM) model for BB prediction, i.e., ELM-based particle swarm optimization (ELM–PSO), ELM-based fruit fly optimization (ELM–FOA), ELM-based whale optimization algorithm (ELM–WOA), ELM-based lion swarm optimization (ELM–LOA), ELM-based seagull optimization algorithm (ELM–SOA) and ELM-based sparrow search algorithm (ELM–SSA). In total, 234 data records from blasting operations in the Sungun mine in Iran were used in this study, including six input parameters (special drilling, spacing, burden, hole length, stemming, powder factor) and one output parameter (i.e., BB). To evaluate the predictive performance of the different optimization models and initial models, six performance indicators including the root mean square error (RMSE), Pearson correlation coefficient (R), determination coefficient (R2), variance accounted for (VAF), mean absolute error (MAE) and sum of square error (SSE) were used to evaluate the models in the training and testing phases. The results show that the ELM–LSO was the best model to predict BB with RMSE of 0.1129 (R: 0.9991, R2: 0.9981, VAF: 99.8135%, MAE: 0.0706 and SSE: 2.0917) in the training phase and 0.2441 in the testing phase (R: 0.9949, R2: 0.9891, VAF: 98.9806%, MAE: 0.1669 and SSE: 4.1710). Hence, ELM techniques combined with SIO algorithms are an effective method to predict BB.

Funder

Federation University Australia

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3