Modeling Indium Extraction, Supply, Price, Use and Recycling 1930–2200 Using the WORLD7 Model: Implication for the Imaginaries of Sustainable Europe 2050

Author:

Sverdrup Harald UlrikORCID,van Allen Ole,Haraldsson Hördur Valdimar

Abstract

AbstractThe increasing need for indium in photovoltaic technologies is set to exceed available supply. Current estimates suggest only 25% of global solar cell demand for indium can be met, posing a significant challenge for the energy transition. Using the WORLD7 model, this study evaluated the sustainability of indium production and overall market supply. The model considers both mass balance and the dynamic interplay of supply–demand in determining indium prices. It is estimated that a total of 312,000 tons of indium can be extracted. However, the primary hindrance to supply is the availability of extraction opportunities and the necessary infrastructure. Unless we improve production capacity, indium may face shortages, hindering the advancement of pivotal technologies. A concern observed is the insufficient rate of indium recycling. Boosting this could greatly alleviate supply pressures. Projections indicate that indium production will reach its peak between 2025 and 2030, while the peak for photovoltaic solar panels due to indium shortages is anticipated around 2090, with an installed capacity of 1200 GW. Thus, the growth of photovoltaic capacity may lag behind actual demand. For a sustainable future, understanding the role of essential metals like indium is crucial. The European Environment Agency (EEA) introduced four “imaginaries” depicting visions of a sustainable Europe by 2050 (SE2050), each representing a unique future set within specific parameters. Currently, Europe is heavily dependent on imports for tech metals and has limited recycling capabilities, putting it at a disadvantage in a global context. To achieve sustainability, there is a need for improved infrastructure for extraction, recycling, and conservation of metals such as indium. These resources are crucial for realizing Europe’s 2050 sustainability objectives. Furthermore, understanding the role of these metals in wider overarching strategies is vital for envisioning a sustainable European Union by 2050, as depicted in the Imaginaries.

Funder

EU-H2020

Umweltbundesamt

Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit

Inland Norway University Of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3