Scenario Reduction of Realizations Using Fast Marching Method in Robust Well Placement Optimization of Injectors
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science
Link
https://link.springer.com/content/pdf/10.1007/s11053-021-09833-5.pdf
Reference56 articles.
1. Azamipour, V., Misaghian, N., & Assareh, M. (2020). Multi-level optimization of reservoir scheduling using multi-resolution wavelet-based up-scaled models. Natural Resources Research, 29(3), 2103–2125. https://doi.org/10.1007/s11053-019-09538-w.
2. Bangerth, W., Klie, H., Wheeler, M. F., Stoffa, P. L., & Sen, M. K. (2006). On optimization algorithms for the reservoir oil well placement problem. Computational Geosciences, 10(3), 303–319. https://doi.org/10.1007/s10596-006-9025-7.
3. Barros, E., Fonseca, R. M., & Moraes, R. J. De. (2019). Production optimisation under uncertainty with automated scenario reduction: A real-field case application. In SPE reservoir characterisation and simulation conference and exhibition. Abu Dhabi. https://doi.org/10.2118/196637-MS.
4. Barth, T. J., & Sethian, J. A. (1998). Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains. Journal of Computational Physics, 145(1), 1–40. https://doi.org/10.1006/jcph.1998.6007.
5. Busby, D., Pivot, F., & Tadjer, A. (2017). Use of data analytics to improve well placement optimization under uncertainty. In Abu Dhabi international petroleum exhibition & conference. Abu Dhabi. https://doi.org/10.2118/188265-MS.
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Effect of reservoir heterogeneity on well placement prediction in CO2-EOR projects using machine learning surrogate models: Benchmarking of boosting-based algorithms;Geoenergy Science and Engineering;2024-02
2. Application of fast marching method and quality map to well trajectory optimization with a novel well parametrization;Geoenergy Science and Engineering;2023-12
3. Fast marching method assisted permeability upscaling using a hybrid deep learning method coupled with particle swarm optimization;Geoenergy Science and Engineering;2023-11
4. A critical review on intelligent optimization algorithms and surrogate models for conventional and unconventional reservoir production optimization;Fuel;2023-10
5. Improved history matching of channelized reservoirs using a novel deep learning-based parametrization method;Geoenergy Science and Engineering;2023-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3