Smart Proxy Modeling of a Fractured Reservoir Model for Production Optimization: Implementation of Metaheuristic Algorithm and Probabilistic Application

Author:

Ng Cuthbert Shang Wui,Jahanbani Ghahfarokhi Ashkan,Nait Amar Menad,Torsæter Ole

Abstract

AbstractNumerical reservoir simulation has been recognized as one of the most frequently used aids in reservoir management. Despite having high calculability performance, it presents an acute shortcoming, namely the long computational time induced by the complexities of reservoir models. This situation applies aptly in the modeling of fractured reservoirs because these reservoirs are strongly heterogeneous. Therefore, the domains of artificial intelligence and machine learning (ML) were used to alleviate this computational challenge by creating a new class of reservoir modeling, namely smart proxy modeling (SPM). SPM is a ML approach that requires a spatio-temporal database extracted from the numerical simulation to be built. In this study, we demonstrate the procedures of SPM based on a synthetic fractured reservoir model, which is a representation of dual-porosity dual-permeability model. The applied ML technique for SPM is artificial neural network. We then present the application of the smart proxies in production optimization to illustrate its practicality. Apart from applying the backpropagation algorithms, we implemented particle swarm optimization (PSO), which is one of the metaheuristic algorithms, to build the SPM. We also propose an additional procedure in SPM by integrating the probabilistic application to examine the overall performance of the smart proxies. In this work, we inferred that the PSO had a higher chance to improve the reliability of smart proxies with excellent training results and predictive performance compared with the considered backpropagation approaches.

Funder

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3