Abstract
AbstractWe discuss the numerical solution to a class of continuous time finite state mean field games. We apply the deep neural network (DNN) approach to solving the fully coupled forward and backward ordinary differential equation system that characterizes the equilibrium value function and probability measure of the finite state mean field game. We prove that the error between the true solution and the approximate solution is linear to the square root of DNN loss function. We give an example of applying the DNN method to solve the optimal market making problem with terminal rank-based trading volume reward.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Statistics and Probability,Economics and Econometrics