Use of Camera and AI for Mapping Monitoring for Architecture

Author:

Falcone MarikaORCID,Dell’Annunziata Guido NapolitanoORCID

Abstract

AbstractThis research focuses on studying low-cost techniques for rapid mapping, utilizing sensors equipped on smartphones. These devices were installed on a radio-controlled vehicle to conduct an experimental campaign aimed at evaluating the performance of LiDAR sensor. By collecting data, machine learning algorithms were employed for the detection of architectural defects.

Funder

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Visual Arts and Performing Arts,General Mathematics,Architecture

Reference10 articles.

1. Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi. 2017. Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET): 1–6.

2. Falcone, Marika, and Massimiliano Campi. 2021. Il Quadriportico della Cattedrale di S. Matteo: sensori low cost per rilievi di rapid mapping/ The Quadriportico of the Cathedral of S. Matteo: Low-cost Sensors for Rapid Mapping Surveys. In Connettere. Un disegno per annodare e tessere. Linguaggi Distanze Tecnologie. Atti del 42° Convegno Internazionale dei Docenti delle Discipline della Rappresentazione/Connecting. Drawing for weaving relationship. Languages Distances Technologies. Proceedings of the 42th International Conference of Representation Disciplines Teachers, 2283–2300. Milano: FrancoAngeli.

3. Fassmeyer, Pascal, Felix Kortmann, Paul Drews, and Burkhardt Funk. 2021. Towards a Camera-Based Road Damage Assessment and Detection for Autonomous Vehicles: Applying Scaled-YOLO and CVAE-WGAN. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). https://doi:https://doi.org/10.1109/VTC2021-Fall52928.2021.9625213.

4. Fiorini, Andrea. 2022. Scansioni dinamiche in archeologia dell’architettura: test e valutazioni metriche del sensore LiDAR di Apple. Archeologia e Calcolatori. 33.1:35-54

5. Kagaya, Hokuto, Kiyoharu Aizawa, and Makoto Ogawa. 2014. Food detection and recognition using convolutional neural network. Proceedings of the 22nd ACM international conference on Multimedia: 1085–1088.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Architectural Decay by AI Applied to 3D Survey;Digital Innovations in Architecture, Engineering and Construction;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3