Evolutionary Approach to Biological Homochirality

Author:

Konstantinov Konstantin K.ORCID,Konstantinova Alisa F.

Abstract

AbstractWe study a very simple linear evolutionary model based on distribution of protocells by total enantiomeric excess and without any mutual inhibition and show that such model can produce two species with values of total enantiomeric excess in each of the species approaching $$\pm 1$$ ± 1 when there is a global $$L\leftrightarrow D$$ L D symmetry. We then consider a scenario when there is a small external global asymmetry factor, like weak interaction, and show that only one of the species remains in such a case, and that is the one, which is more efficient in replication. We perform an estimate of the time necessary to reach homochirality in such a model and show that reasonable assumptions lead to an estimate of around 300 thousand years plus or minus a couple of orders of magnitude. Despite this seemingly large time to reach homochirality, the model is immune to racemization because amino acids in the model follow the lifespan of the protocells rather than the time needed to reach homochirality. We show that not needing mutual inhibition in such evolutionary model is due to the difference in the topology of the spaces in which considered model and many known models of biological homochirality operate. Bifurcation-based models operate in disconnected zero-dimensional space (the space is just two points with enantiomeric excess equal $$-1$$ - 1 and $$1$$ 1 ), whereas considered evolutionary model (in its continuous representation) operates in one-dimensional connected space, that is the whole interval between $$-1$$ - 1 and $$1$$ 1 of total enantiomeric excess. We then proceed with the analysis of the replication process in non-homochiral environment and show that replication errors (the probability to attach an amino acid of wrong chirality) result in a smooth decrease of replication time when total enantiomeric excess of the replicated structure moves away from zero. We show that this decrease in replication time is sufficient for considered model to work.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Ecology, Evolution, Behavior and Systematics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3