Abstract
AbstractTransmembrane substrate cleavage by the smallEscherichia colirhomboid protease GlpG informs on mechanisms by which lipid interactions shape reaction coordinates of membrane-embedded enzymes. Here, I review and discuss new work on the molecular picture of protein–lipid interactions that might govern the formation of the substrate–enzyme complex in fluid lipid membranes. Negatively charged PG-type lipids are of particular interest, because they are a major component of bacterial membranes. Atomistic computer simulations indicate POPG and DOPG lipids bridge remote parts of GlpG and might pre-occupy the substrate-docking site. Inhibition of catalytic activity by PG lipids could arise from ligand-like lipid binding at the active site, which could delay or prevent substrate docking. Dynamic protein–lipid H-bond networks, water access to the active site, and fluctuations in the orientation of GlpG suggest that GlpG has lipid-coupled dynamics that could shape the energy landscape of transmembrane substrate docking.Graphic Abstract
Funder
Excellence Initiative of the German Federal and State Governments, provided via the Freie Universität Berlin
Computing time from HLRN, The North-German Supercomputing Alliance
Freie Universität Berlin
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Physiology,Biophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献