Abstract
AbstractGlobal agriculture and food security are encountering unprecedented challenges from both the ever-growing population and rapidly changing climate conditions. CRISPR/Cas-mediated genome editing technology has revolutionized plant functional genetic research and precision crop breeding with robustness, high target specificity and programmability. Furthermore, numerous emerging biotechnologies based on the CRISPR/Cas platform provide the opportunity to create new crop germplasms with durable resistance against disease or insect pests, herbicide tolerance, and other stress-tolerant improvements, reshaping crop protection to increase agricultural resilience and sustainability. In this review, we briefly describe the CRISPR/Cas toolbox, including base editing, prime editing, compact genome manipulation, transcriptional regulation and epigenetic editing, and then overview the most important applications of CRISPR/Cas-mediated crop genetic improvement, highlighting crop protection-based stress resistance engineering. In addition, we enumerate global regulations on genome-edited crops. Finally, we discuss some bottlenecks facing this cutting-edge technology and infinite possibilities for the future.
Funder
Administration Bureau of Sanya Yazhou Bay Science and Technology City
China Agricultural Research System of MOF and MARA
Publisher
Springer Science and Business Media LLC
Reference145 articles.
1. FAO (Food and Agriculture Organization, United Nations). 2017. The future of food and agriculture: Trends and challenges (FAO).
2. Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky BL, Lassaletta L, et al. Options for keeping the food system within environmental limits. Nature. 2018;562:519–25.
3. Hickey LT, N Hafeez A, Robinson H, Jackson SA, Leal-Bertioli S, Tester M, et al. Breeding crops to feed 10 billion. Nat Biotechnol. 2019;37:744–754.
4. Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol. 2019;70:667–97.
5. Zhang D, Zhang Z, Unver T, Zhang B. CRISPR/Cas: a powerful tool for gene function study and crop improvement. J Adv Res. 2021;29:207–21.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献