Dual threshold input receiver FPGA-only signal digitization method for time-of-flight positron emission tomography

Author:

Ko Guen Bae,Lee Jae SungORCID

Abstract

AbstractAs silicon photomultiplier (SiPM)-based time-of-flight (TOF) positron emission tomography (PET) becomes popular, the need for sophisticated PET data acquisition (DAQ) systems is increasing. One promising solution to this challenge is the adoption of a field-programmable gate array (FPGA)-only signal digitization method. In this paper, we propose a new approach to efficiently implement an FPGA-only digitizer. We configured the input/output (IO) port of the FPGA to function as a dual-threshold voltage comparator through the use of simple passive circuitry and heterogeneous IO standards. This configuration overcomes the limitations of existing methods by allowing different threshold voltages for adjacent IO pins, effectively reducing routing complexity and lowering manufacturing costs. An FPGA-only digitizer was implemented by integrating the dual-threshold voltage comparator and FPGA-based time-to-digital converter. By combining the dual-threshold time-over-threshold (TOT) method and curve fitting, precise energy information could be obtained. The performance of the FPGA-only digitizer was assessed using a detector setup comprising a 3 × 3 × 20 mm3 LYSO scintillation crystal and a single pixel SiPM. Using the configured evaluation setup, an energy resolution of 12.5% and a time resolution of 146 ± 9 ps were achieved for a 20 mm scintillation crystal. The dual-threshold TOT implemented using the proposed method showed consistent linearity across an energy range of 100 keV to 600 keV. The proposed method is well-suited for the development of cost-effective DAQ systems in highly integrated TOF PET systems.

Funder

Korea Medical Device Development Fund

National Research Foundation of Korea

Seoul National University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A cost-effective field-programmable-gate-array-based pulse processor for biomedical imaging applications;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3