Cortical representation of musical pitch in event-related potentials

Author:

Kim Taehyoung,Chung Miyoung,Jeong Eunju,Cho Yang Seok,Kwon Oh-Sang,Kim Sung-Phil

Abstract

AbstractNeural coding of auditory stimulus frequency is well-documented; however, the cortical signals and perceptual correlates of pitch have not yet been comprehensively investigated. This study examined the temporal patterns of event-related potentials (ERP) in response to single tones of pitch chroma, with an assumption that these patterns would be more prominent in musically-trained individuals than in non-musically-trained individuals. Participants with and without musical training (N = 20) were presented with seven notes on the C major scale (C4, D4, E4, F4, G4, A4, and B4), and whole-brain activities were recorded. A linear regression analysis between the ERP amplitude and the seven notes showed that the ERP amplitude increased or decreased as the frequency of the pitch increased. Remarkably, these linear correlations were anti-symmetric between the hemispheres. Specifically, we found that ERP amplitudes of the left and right frontotemporal areas decreased and increased, respectively, as the pitch frequency increased. Although linear slopes were significant in both groups, the musically-trained group exhibited marginally steeper slope, and their ERP amplitudes were most discriminant for frequency of tone of pitch at earlier latency than in the non-musically-trained group (~ 460 ms vs ~ 630 ms after stimulus onset). Thus, the ERP amplitudes in frontotemporal areas varied according to the pitch frequency, with the musically-trained participants demonstrating a wider range of amplitudes and inter-hemispheric anti-symmetric patterns. Our findings may provide new insights on cortical processing of musical pitch, revealing anti-symmetric processing of musical pitch between hemispheres, which appears to be more pronounced in musically-trained people.

Funder

Ministry of Science and ICT, South Korea

Samsung

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Music Training and Nonmusical Abilities;Annual Review of Psychology;2024-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3