Development of generalizable automatic sleep staging using heart rate and movement based on large databases

Author:

Lee Joonnyong,Kim Hee Chan,Lee Yu Jin,Lee SaramORCID

Abstract

Abstract Purpose With the advancement of deep neural networks in biosignals processing, the performance of automatic sleep staging algorithms has improved significantly. However, sleep staging using only non-electroencephalogram features has not been as successful, especially following the current American Association of Sleep Medicine (AASM) standards. This study presents a fine-tuning based approach to widely generalizable automatic sleep staging using heart rate and movement features trained and validated on large databases of polysomnography. Methods A deep neural network is used to predict sleep stages using heart rate and movement features. The model is optimized on a dataset of 8731 nights of polysomnography recordings labeled using the Rechtschaffen & Kales scoring system, and fine-tuned to a smaller dataset of 1641 AASM-labeled recordings. The model prior to and after fine-tuning is validated on two AASM-labeled external datasets totaling 1183 recordings. In order to measure the performance of the model, the output of the optimized model is compared to reference expert-labeled sleep stages using accuracy and Cohen’s κ as key metrics. Results The fine-tuned model showed accuracy of 76.6% with Cohen’s κ of 0.606 in one of the external validation datasets, outperforming a previously reported result, and showed accuracy of 81.0% with Cohen’s κ of 0.673 in another external validation dataset. Conclusion These results indicate that the proposed model is generalizable and effective in predicting sleep stages using features which can be extracted from non-contact sleep monitors. This holds valuable implications for future development of home sleep evaluation systems.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3