Fabrication and validation of flexible neural electrodes based on polyimide tape and gold sheet

Author:

Jeong Hyunbeen,Lee Taekyung,Kim Jisung,Jeong Hee Soo,Jun Sang Beom,Seo Jong-Mo

Abstract

AbstractThis research was conducted to apply polyimide tape, which has the advantages of low price ans strong adhesive strength, to the neural electrode process. In addition, to maximize the low-cost characteristics, a fabrication process based on UV laser patterning rather than a photolithography process was introduced. The fabrication process started by attaching the gold sheet on the conductive double-sided tape without being torn or crushed. Then, the gold sheet and the double-sided tape were patterned together using UV laser. The patterned layer was transferred to the single-side polyimide tape. For insulation layer, electrode site opened single-sided polyimide tape was prepared. Polydimethylsiloxane was used as an adhesion layer, and alignment between electrode sites and opening sites was processed manually. The minimum line width achieved through the proposed fabrication process was approximately 100 $$\mu$$ μ m, and the sheet resistance of the conductive layer was 0.635 $$\Omega$$ Ω /sq. Measured cathodal charge storage capacity was 0.72 mC/cm$$^2$$ 2 and impedance at 1 kHz was 4.07 k$$\Omega$$ Ω /cm$$^2$$ 2 . Validation of fabricated electrode was confirmed by conducting 30 days accelerated soak test, flexibility test, adhesion test and ex vivo stimulation test. The novel flexible neural electrodes based on single-sided polyimide tape and UV laser patterned gold sheet was fabricated successfully. Conventional neural electrode fabrication processes based on polyimide substrate has a disadvantages such as long fabrication time, expensive costs, and probability of delamination between layers. However, the novel fabrication process which we introduced can overcome many shortcomings of existing processes, and offers great advantages such as simplicity of fabrication, inexpensiveness, flexibility and long-term reliability.

Funder

National Research Foundation of Korea

Korea Medical Device Development Fund grant

Ministry of Education

Seoul National University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3