Author:
Elhoushy Mohanad,Zalam Belal A.,Sayed Amged,Nabil Essam
Abstract
AbstractRegulating blood glucose level (BGL) for type-1 diabetic patient (T1DP) accurately is very important issue, an uncontrolled BGL outside the standard safe range between 70 and 180 mg/dl results in dire consequences for health and can significantly increase the chance of death. So the purpose of this study is to design an optimized controller that infuses appropriate amounts of exogenous insulin into the blood stream of T1DP proportional to the amount of obtained glucose from food. The nonlinear extended Bergman minimal model is used to present glucose-insulin physiological system, an interval type-2 fuzzy logic controller (IT2FLC) is utilized to infuse the proper amount of exogenous insulin. Superiority of IT2FLC in minimizing the effect of uncertainties in the system depends primarily on the best choice of footprint of uncertainty (FOU) of IT2FLC. So a comparison includes four different optimization methods for tuning FOU including hybrid grey wolf optimizer-cuckoo search (GWOCS) and fuzzy logic controller (FLC) method is constructed to select the best controller approach. The effectiveness of the proposed controller was evaluated under six different scenarios of T1DP using Matlab/Simulink platform. A 24-h scenario close to real for 100 virtual T1DPs subjected to parametric uncertainty, uncertain meal disturbance and random initial condition showed that IT2FLC accurately regulate BGL for all T1DPs within the standard safe range. The results indicated that IT2FLC using GWOCS can prevent side effect of treatment with blood-sugar-lowering medication. Also stability analysis for the system indicated that the system operates within the stability region of nonlinear system.
Publisher
Springer Science and Business Media LLC