ReSyst: a novel technique to Reduce the Systematic uncertainty for precision measurements

Author:

Van Mulders P.ORCID

Abstract

Abstract We are in an era of precision measurements at the Large Hadron Collider. The precision that can be achieved on some of those is limited however due to large systematic uncertainties. This paper introduces a new technique to reduce the total systematic uncertainty by quantifying the systematic impact of single events and correlating it with event observables to identify classes of events that are more sensitive to systematic effects. A proof of concept is presented by means of a simplified top quark mass estimator applied on simulated events. Even without a thorough optimization, it is shown that the total systematic uncertainty can be reduced by at least 30%.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference28 articles.

1. CMS collaboration, Measurement of the top quark mass with lepton+jets final states using pp collisions at $$ \sqrt{s}=13 $$ TeV, Eur. Phys. J. C 78 (2018) 891 [arXiv:1805.01428] [INSPIRE].

2. CMS collaboration, ECFA 2016: prospects for selected standard model measurements with the CMS experiment at the High-Luminosity LHC, CMS-PAS-FTR-16-006 (2016).

3. DELPHI collaboration, Measurement of the mass and width of the W boson in e + e − collisions at $$ \sqrt{s}=161 $$ GeV-209 GeV, Eur. Phys. J. C 55 (2008) 1 [arXiv:0803.2534] [INSPIRE].

4. A. Beddall and A. Bingül, Reducing systematic errors in the selection of signals from two-photon mass spectra, Nucl. Instrum. Meth. A 554 (2005) 1.

5. L. Lyons, A method of reducing systematic errors in classification problems, Nucl. Instrum. Meth. A 324 (1993) 3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3