Abstract
Abstract
We argue that for any single-trace operator in $$ \mathcal{N} $$
N
= 4 SYM theory there is a large twist double-scaling limit in which the Feynman graphs have an iterative structure. Such structure can be recast using a graph-building operator. Generically, this operator mixes between single trace operators with different scaling limits. The mixing captures both the finite coupling spectrum and corrections away from the large twist limit. We first consider a class of short operators with gluons and fermions for which such mixing problems do not arise, and derive their finite coupling spectra. We then focus on a class of long operators with gluons that do mix. We invert their graph-building operator and prove its integrability. The picture that emerges from this work opens the door to a systematic expansion of $$ \mathcal{N} $$
N
= 4 SYM theory around the large twist limit.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献