The Schwinger-Keldysh coset construction

Author:

Akyuz Can OnurORCID,Goon GarrettORCID,Penco RiccardoORCID

Abstract

Abstract The coset construction is a tool for systematically building low energy effective actions for Nambu-Goldstone modes. This technique is typically used to compute time-ordered correlators appropriate for S-matrix computations for systems in their ground state. In this paper, we extend this technique to the Schwinger-Keldysh formalism, which enables one to calculate a wider variety of correlators and applies also to systems in a mixed state. We focus our attention on internal symmetries and demonstrate that, after identifying the appropriate symmetry breaking pattern, Schwinger-Keldysh effective actions for Nambu-Goldstone modes can be constructed using the standard rules of the coset construction. Particular emphasis is placed on the thermal state and ensuring that correlators satisfy the KMS relation. We also discuss explicitly the power counting scheme underlying our effective actions. We comment on the similarities and differences between our approach and others that have previously appeared in the literature. In particular, our prescription does not require the introduction of additional “diffusive” symmetries and retains the full non-linear structure generated by the coset construction. We conclude with a series of explicit examples, including a computation of the finite-temperature two-point functions of conserved spin currents in non-relativistic paramagnets, antiferromagnets, and ferromagnets. Along the way, we also clarify the discrete symmetries that set antiferromagnets apart from ferromagnets, and point out that the dynamical KMS symmetry must be implemented in different ways in these two systems.

Publisher

Springer Science and Business Media LLC

Reference66 articles.

1. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. I, Phys. Rev. 177 (1969) 2239 [INSPIRE].

2. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. II, Phys. Rev. 177 (1969) 2247 [INSPIRE].

3. D. V. Volkov, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra 4 (1973) 3. [INSPIRE].

4. V.I. Ogievetsky, Nonlinear Realizations of Internal and Space-time Symmetries , in X-th Winter School of Theoretical Physics in Karpacz: New developments in relativistic quantum field theory. Volume 1, Universitas Wratislaviensis (1974).

5. C.R. Galley, Classical Mechanics of Nonconservative Systems, Phys. Rev. Lett. 110 (2013) 174301 [arXiv:1210.2745] [INSPIRE].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3