Electroweak phase transition in the Z3-invariant NMSSM: Implications of LHC and Dark matter searches and prospects of detecting the gravitational waves

Author:

Chatterjee Arindam,Datta AseshKrishnaORCID,Roy SubhojitORCID

Abstract

Abstract We study in detail the viability and the patterns of a strong first-order electroweak phase transition as a prerequisite to electroweak baryogenesis in the framework of Z3-invariant Next-to-Minimal Supersymmetric Standard Model (NMSSM), in the light of recent experimental results from the Higgs sector, dark matter (DM) searches and those from the searches of the lighter chargino and neutralinos at the Large Hadron Collider (LHC). For the latter, we undertake thorough recasts of the relevant, recent LHC analyses. With the help of a few benchmark scenarios, we demonstrate that while the LHC has started to eliminate regions of the parameter space with relatively small μeff, that favors the coveted strong first-order phase transition, rather steadily, there remains phenomenologically much involved and compatible regions of the same which are yet not sensitive to the current LHC analyses. It is further noted that such a region could also be compatible with all pertinent theoretical and experimental constraints. We then proceed to analyze the prospects of detecting the stochastic gravitational waves, which are expected to arise from such a phase transition, at various future/proposed experiments, within the mentioned theoretical framework and find them to be somewhat ambitious under the currently projected sensitivities of those experiments.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference209 articles.

1. V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

2. M. E. Shaposhnikov, Possible Appearance of the Baryon Asymmetry of the Universe in an Electroweak Theory, JETP Lett. 44 (1986) 465 [INSPIRE].

3. M. E. Shaposhnikov, Baryon Asymmetry of the Universe in Standard Electroweak Theory, Nucl. Phys. B 287 (1987) 757 [INSPIRE].

4. Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

5. A. D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3